SEM modeling with singular moment matrices Part II: ML-Estimation of sampled stochastic differential equations
نویسنده
چکیده
Linear stochastic differential equations (SDE) are expressed as an exact discrete model (EDM) and estimated with structural equation models (SEM) and the Kalman filter (KF) algorithm. The SEM likelihood is well defined even for the times series case and the SEM and KF approach yield the same likelihood. The oversampling approach is introduced in order to formulate the EDM on a time grid which is finer than the sampling intervals. This leads to a simple computation of the nonlinear parameter functionals of the EDM. For small discretization intervals, the functionals can be linearized and software permitting only linear parameter restrictions can be used. However, in this case the SEM approach must handle large matrices leading to degraded performance and possible numerical problems. The methods are compared using coupled linear random oscillators with time varying parameters and irregular sampling times.
منابع مشابه
Application of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel
In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملComputational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کاملNew Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives
In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...
متن کاملSimulating and Forecasting OPEC Oil Price Using Stochastic Differential Equations
The main purpose of this paper is to provide a quantitative analysis to investigate the behavior of the OPEC oil price. Obtaining the best mathematical equation to describe the price and volatility of oil has a great importance. Stochastic differential equations are one of the best models to determine the oil price, because they include the random factor which can apply the effect of different ...
متن کامل